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Abstract: Most bio-inspired antireflective nanostructures are extremely vulnerable and suffer from
complicated lithography-based fabrication procedures. To address the issues, we report a scalable
and simple non-lithography-based approach to engineer robust antireflective structures, inspired
by the longtail glasswing butterfly, in a single step. The resulting two-dimensional randomly ar-
ranged 80/130/180 nm silica colloids, partially embedded in a polymeric matrix, generate a gradual
refractive index transition at the air/substrate interface to suppress light reflection. Importantly, the
randomly arranged subwavelength silica colloids display even better antireflection performance for
large incident angles than that of two-dimensional non-close-packed silica colloidal crystals. The
biomimetic coating is of considerable technological importance in numerous practical applications.

Keywords: antireflective nanostructures; longtail glasswing butterfly; subwavelength colloids; single
step; antireflection

1. Introduction

Fresnel reflection occurs when light penetrates through an interface between two
optical media with different refractive indices [1,2]. The light reflection from optical
systems, such as a camera lens, corrective lenses, panel displays, automotive dashboards,
and face shields incurs veil glare and degrades overall optical performance. To diminish
the unfavorable light reflection, single-layer/multilayer interference coatings consisting
of transparent materials with appropriate refractive indices have been widely used to
moderate the refractive index change [3–6]. However, low-refractive-index transparent
materials are scarce and highly priced. As an alternative, porous coating layers with
adjustable refractive indices can be fabricated through phase separation of polymer blends,
sol-gel processing, plasma-enhanced chemical vapor deposition, multilayer deposition
of nanoparticles/polyelectrolytes, and many others [7–11]. Unfortunately, the porous
antireflection coatings are limited by narrow operating wavelength regions.

Over four hundred million years of natural selection, living beings have created diverse
functional architectures for survival. For example, moth eyes, hawk moth wings, and cicada
wings are covered with hexagonally arranged submicrometer-scale protuberances to reduce
light scattering as well as to minimize reflectivity in the broadband wavelength region over
wide incident angles [12–14]. The high-aspect-ratio structure arrays allow the insects to
avoid tracking by predators. Inspired by their camouflage characteristics, artificial conical
structure arrays, pillar-shaped structure arrays, pyramid-like structure arrays, and so on,
have been developed via a large variety of top-down fabrication approaches to function
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as antireflective structures [15–17]. Nevertheless, current lithography-based technologies,
such as interference lithography and photolithography, are costly, complex, and restricted
to either a limited sample size or low resolution features.

By contrast, spontaneous crystallization of colloids renders an inexpensive and sim-
ple alternative for creating high-resolution antireflective structures. The self-assembled
colloidal monolayers can serve as templates to pattern demanded architectures [18,19].
However, most of existing bottom-up fabrication approaches, including breath figure-based
assemblies, magnetic-/electro-filed-assisted assemblies, capillary-force-induced assemblies,
and Langmuir-Blodgett technology inevitably suffer from low-throughput production and
technical incompatibility with standard industrial microfabrication [20–24]. In addition,
the self-assembled colloids thermodynamically favor hexagonal close-packed crystal struc-
tures, while non-close-packed antireflective structures are required to clamp down the
internal reflection between structures. To resolve the issues, a spinning-shear-force-induced
assembly technology has recently been developed to rapidly produce wafer-sized non-
close-packed colloidal monolayers using a standard spin-coater [25]. The shear-aligned
colloidal crystals can be utilized to design and build moderate-aspect-ratio (~1) antireflec-
tive structures [26,27]. Unfortunately, their antireflection performances are impaired at
large viewing angles.

Longtail glasswing butterfly wings are covered with irregular positioning moderate-
aspect-ratio dome-shaped structures to produce angle-independent optical transparency [28,29]
Interestingly, the randomness is not only found on the structure arrangement, but also on the
structural height distribution. The dome-shaped structures feature a Gaussian height distribu-
tion and possess an average inter-structure distance of ~100 nm. By optimizing the structure
height and distribution, the large-scale fabrication of such antireflective structures seems
feasible. Taking the longtail glasswing butterfly as a prototype, varisized submicrometer-scale
colloids are spin-coated to biomimic the irregular dome-shaped structures in this research.
The corresponding omnidirectional antireflective characteristics are evaluated to bridge the
bioinspired structures and practical applications.

2. Materials and Methods

Spherical silica colloids with less than 5% diameter variation are synthesized by
following the well-established StÖber method [30]. In a standard synthesis, the amount of
tetraethyl orthosilicate (TEOS) (≥99 wt.%, Merck & Company, Incorporated) demanded
is rapidly poured into a mixture of 650 mL of anhydrous ethanol (200-proof, Merck &
Company, Incorporated, Kenilworth, NJ, USA), 55 mL of deionized water, and 25 mL of
ammonium hydroxide solution (28 wt.%, Merck & Company, Incorporated). The solution
is stirred vigorously under ambient conditions for 24 h to bring about monodispersed silica
colloids. The colloid diameter can be easily adjusted through adding varied amounts of
TEOS in the solution, where 29, 34, and 42 mL of TEOS are applied to synthesize silica
colloids with diameters of 80 nm, 130 nm, and 180 nm, respectively, in this study. The
as-synthesized silica colloids are then purified in anhydrous ethanol by repeating five
centrifugation−ultrasonication processes to remove any impurity.

Spherical StÖber silica colloids with tunable diameters are dispersed in photocurable
ethoxylated trimethylolpropane triacrylate (ETPTA) (Sartomer Company Corporation,
Messe Düsseldorf, Düsseldorf, Germany) monomers with a colloid volume fraction of
25%. 2-hydroxy-2-methyl-1-phenyl-1-propanone (Darocur 1173, BASF Corporation, Paris,
France) is added as a photoinitiator. The viscosity of the resulting suspension is determined
by the colloidal volume fraction. A higher colloidal volume fraction leads to a more viscous
suspension. The as-prepared suspension is deposited onto an RCA-cleaned poly (ethylene
terephthalate) (PET) (Ensinger Incorporation, Hsinchu, Taiwan) substrate, followed by
a spin-coating process (5000 rpm for 2 min) to uniformly spread the silica colloids. The
polymerization of ETPTA monomers can be greatly increased by employing Darocur
1173 in a UV curing chamber (XLite 500, OPAS Corporation, Taichung, Taiwan).
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3. Results and Discussion

To investigate the dependences of silica colloid size and arrangement on antireflection
characteristics, non-close-packed 80 nm silica colloidal crystals, non-close-packed 130 nm
silica colloidal crystals, and non-close-packed 180 nm silica colloidal crystals are spin-coated
on PET substrates, respectively (Figure 1). Instead of irregularly positioning, long-range
hexagonal orderings of the self-assembled silica colloids are clearly found. The colloids
are with a fixed inter-colloid distance of

√
2 D, where D represents the silica colloid size.

Even if a few defects are observed, they do not significantly affect the optical uniformity
of the silica colloidal crystal-coated substrates. The observed colloidal crystallization is
attributed to shear-induced ordering. Obviously, the optical transparencies of the substrates
are improved with increasing of the silica colloid size. It is believed that larger colloids
can establish smoother refractive index gradients on the surfaces, and therefore reduce the
optical reflection effectively. Unanticipatedly, the PET substrate turns blue after coating
with 180 nm silica colloidal crystals. The blue color is derived from considerable light
scattering, which is more effective at short wavelengths, in all directions by the 180 nm
silica protuberances [31].
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Figure 1. Top-view SEM images and photos of PET substrates coated with non-close-packed (a,b) 80 nm
silica colloidal crystals, (c,d) 130 nm silica colloidal crystals, and (e,f) 180 nm silica colloidal crystals.

To address the issue, the spin-coating technology is utilized to engineer two-dimensional
randomly arranged subwavelength silica colloids. Spherical silica colloids with diameters
of 80 nm, 130 nm, and 180 nm, synthesized by a standard StÖber method, are dispersed
in photocurable ETPTA monomers with a colloid volume fraction of 25%. Bioinspired by
the longtail glasswing butterfly wings, the amounts of 80 nm colloids, 130 nm colloids,
and 180 nm colloids in the silica colloidal suspension are adjusted in a ratio of 1:2:1. The
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as-prepared silica colloidal suspension is deposited and spread on a PET substrate in a
spin-coating process. The ETPTA monomers are finally UV-polymerized to bring about a
monolayered silica colloid/poly(ETPTA) composite.

As displayed in Figure 2, the irregularly positioning silica colloids are about 100 nm
apart from neighboring colloids, and partially embedded in the poly(ETPTA) matrix. The
silica protuberances are able to moderate the abrupt refractive index change at the air/PET
substrate interface to suppress optical reflection. It is observed that a bare PET substrate
is milky-white in appearance under white light illumination (Figure 3a). In comparison
with that, a considerable improvement in optical transparency from the randomly arranged
80/130/180 nm silica colloid-coated PET substrate is clearly evident. Although the substrate
is slightly blue, primarily caused by the Rayleigh scattering from 180 nm silica colloids, the
high uniformity of the antireflection coating is apparent from the photo [32]. To investigate
the antireflection functionalities of the coating, normal-incidence specular optical reflection
and transmission measurements of the PET substrates are carried out using a UV-Visible-
NIR spectrometer (HR4000, Ocean Optics Incorporation, Shanghai, China). It is found that
the bare substrate displays a reflectance of ~7% in the visible spectrum from 350 to 800 nm,
matching well with the estimated value using the Fresnel equation [33]. Importantly, the
reflectance of the randomly arranged silica colloid-coated substrate is reduced by ~4% over
the whole visible wavelength region. Besides, this silica colloid-coated substrate exhibits
consistently higher transmittance than that of the bare substrate. By contrast, a single
poly(ETPTA) layer-coated substrate and the bare substrate present similar reflectances
and transmittances (Figure 3b). The results disclose that the anti-glare capability can be
enhanced by introducing the longtail glasswing butterfly-inspired structures, but not the
single polymer layer.
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Figure 3. (a) Optical reflection spectra and optical transmission spectra in the visible wavelength
region acquired from the PET substrates. Inserts showing photos of a bare PET substrate (left) and a
randomly arranged 80/130/180 nm silica colloid-coated PET substrate (right). (b) Optical reflection
spectra and optical transmission spectra in the visible wavelength region acquired from a bare PET
substrate and a poly(ETPTA) layer-coated PET substrate.
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To further evaluate their corresponding omnidirectional antireflection characteristics,
optical reflection and transmission measurements of all the above-mentioned PET sub-
strates are acquired in the visible spectrum at varied incident angles. The measurements
from five different regions of each substrate are averaged and compared in Figure 4a,b.
It is noticed that the average reflectance of an uncoated PET substrate (black solid curve)
is increased from 7% to 34%, while its average transmittance is decreased from 90% to
64% as the incident angle varies from 0◦ to 75◦. Compared with that, Fresnel reflections
at varied incident angles are reduced by spin-coating non-close-packed silica colloidal
crystals on the substrates. Larger silica colloids are able to generate more gradual refractive
index transitions even for large incident angles, leading to lower average reflectances and
higher average transmittances for whole the angles of incidence. However, despite the
fact that 180 nm silica colloidal crystal-coated substrate (blue dashed curve) displays the
lowest average reflectances, the resulting light scattering diminishes the optical transmis-
sion of the substrate. In contrast, the 80/130/180 nm silica colloid-coated substrate (red
solid curve) displays similar average reflectance with these silica colloidal crystal-coated
substrates at 0◦. Importantly, its average reflectances are getting even lower than the
others for larger incident angles as a result of the gradual refractive index change. Owing
to the inconsiderable light scattering by the sparse 180 nm silica protuberances, similar
evolution trends are found on the average transmittance curves. The average transmittance
of the PET substrate can be increased by 4% at 0◦, and even by 11% at 75◦. Clearly, in
comparison with the bare substrate, the randomly arranged silica colloid-coated substrate
remains transparent at a large viewing angle of 75◦ (Figure 4b). The photos further con-
firm that the randomly arranged 80/130/180 nm silica colloids can be applied to improve
omnidirectional antireflective properties.
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The antireflective properties are further complemented by plotting calculated effective
refractive index (ne f f ) changes of the hemispherical silica protuberances from the polymer
surfaces to the tops of the protuberances. On the basis of effective medium theory, ne f f

at any protuberant height (h) is expressed as ne f f =
√

n2
silica × fsilica + n2

air × fair, where
nsilica = 1.42, nair = 1, fsilica and fair represent the fractions of silica and air, respectively.
For the hexagonally non-close-packed silica colloidal crystals, the average inter-colloid dis-
tance is evident to be 2

√
2 R, where R denotes the radius of silica colloids (40, 65, and 90 nm in

this study), indicating that fsilica =
(R2−h2)π

4
√

3R2 , fair = 1− (R2−h2)π

4
√

3R2 . This leads to the formula

ne f f =

√
(n2

silica−n2
air)(R2−h2)π

4
√

3R2 + n2
air =

√
n2

silica(R2−h2)π

4
√

3R2 +
n2

air4
√

3R2−n2
air(R2−h2)π

4
√

3R2 By approxi-

mating the average inter-colloid distance of the 80/130/180 nm silica colloid-coated substrate
also equals to 2

√
2R, ne f f of the coating can be expressed as ne f f (mix) =

1
4 × ne f f (R=40nm)



Nanomaterials 2022, 12, 1856 6 of 9

+ 1
2 × ne f f (R=65nm) +

1
4 × ne f f (R=90nm). Figure 5 compares the calculated ne f f profiles of the

as-prepared silica colloid-coated substrates. For the 80/130/180 nm silica colloid-coated sub-
strate (red dashed curve), the ne f f gradually changes from 1.42 (at the bottom of protuberance)
to 1 (air), resulting in the lowest reflection in the whole visible spectrum.
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Coating hardness, the capacity of a particular coating to withstand superficial mechan-
ical forces, is an important factor to assess its environmental durability. In this work, a
constant-load scratch test according to the ASTM D3363 method is applied to determine the
hardness of as-coated randomly arranged 80/130/180 nm silica colloid/poly(ETPTA) com-
posite using a pencil set with different hardness grades (1H–5H) [34–37]. In the experiment,
the selected pencil with a load of 10 N is placed on the coating and forms a 45◦ angle with
the surface. The highest pencil grade that is unable to cause damage after 500 rubbing cycles
is considered as the coating hardness. As displayed in Figure 6, the average reflectances
and transmittances of the randomly arranged 80/130/180 nm silica colloid-coated PET
substrate are well-maintained after a 4H pencil hardness test. In contrast, its intrinsic
antireflection characteristics are impaired after scratching with a 5 H pencil, resulting from
obvious traces of scratches on the surface (insert of Figure 6). The coating hardness is even
competitive with commercial antireflection coatings [38]. Moreover, in comparison with the
hardness of the randomly arranged 80/130/180 nm silica colloid-coated PET substrate, it is
evident that the surface and the corresponding optical properties of a bare PET substrate are
damaged after scratching with a 2H pencil (Figure 7). It is believed that the incorporation
of silica colloids as reinforcing fillers improves the coating hardness, which is desirable for
practical applications.
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Figure 7. (a) Average reflectances and (b) average transmittances in the visible spectrum acquired
from bare PET substrates after pencil hardness tests at varied angles of incidence. Insert showing an
optical micrograph of a bare PET substrate after scratching with a 2H pencil.

4. Conclusions

To conclude, a scalable approach is developed to engineer longtail glasswing butterfly
wing-inspired antireflective structures in a single-step. The resulting subwavelength-scale
silica colloid/polymer composite behaves with broadband antireflection characteristics and
a competitive coating hardness. Importantly, in comparison with non-close-packed silica
colloidal crystals, the randomly arranged silica colloids exhibit improved antireflection
performance for large incident angles. It is worth mentioning that randomly arranged
silica colloids can be easily fabricated by the scalable and microfabrication-compatible
spin-coating technology. Furthermore, commercial silica colloids with large diameter
variations are much more inexpensive. This low-cost and simple methodology offers a
new opportunity in practical applications. Further structural optimization is still under
examination and will be reported on in the near future.
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read and agreed to the published version of the manuscript.
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