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Abstract: Climacteric fruits are harvested before they are ripened to avoid adverse damages during
transport. The unripe fruits can undergo ripening processes associated with rind color changes on
exposure to ethanol vapors. Although rind coloration is a common indicator showing fruit maturity,
the attribute does not provide reliable assessment of maturity especially for melons. Herein, we report
the achievement of sensitive and reversible melon maturity detection using macroporous hydrogel
photonic crystals self-assembled by a roll-to-roll compatible doctor-blade-coating technology. The
consumption of applied ethanol vapor during melon ripening results in less condensation of ethanol
vapor in the pores (250 nm in diameter), leading to a distinct blue-shift of the optical stop band from
572 to 501 nm and an obvious visual colorimetric readout from yellow green to blue. Moreover, the
dependence of the color change on Brix value within the melon has also been evaluated in the study.

Keywords: fruit maturity detection; ethanol vapor; photonic crystals; doctor-blade-coating; visual
colorimetric readout

1. Introduction

Fruits can be categorized into two types: non-climacteric fruits and climacteric
fruits [1,2]. Non-climacteric fruits have to stay on plants to undergo ripening processes,
which are associated with modifications in fruit composition, taste, texture, aroma and
rind color [3]. Once harvesting, the fruits cannot gain sweetness and flavor anymore. As
opposed to those, climacteric fruits, such as tomatoes, bananas, plums, peaches, melons
and many others, are able to reach full physiological maturity even after all whole fruits
are cut-up from plants [4–6]. Benefiting from the characteristic, immature climacteric fruits
are harvested to extend shelf-life and to minimize adverse bruising during shipment. After-
wards, the management of fruit maturity can be implemented by introducing exogenously
applied ethanol, which promotes ripening of climacteric fruits [7–9]. Depending on the
fruit cultivar and the fruit maturity, different amounts of ethanol vapor are applied to
accelerate converting starch into sugar within fruits. As a result, starchy, crunchy and bland
tasting climacteric fruits are softened and gain more flavors in the ripening processes. In
addition to that, the fruit ripening is accompanied with a series of biochemical and physio-
logical changes, including decrease in organic acids, fruit texture softening, formation of
volatile chemical compounds, non-photosynthetic pigment accumulation, and degradation
of chlorophyll [10,11].

Determining the best moment for tasting fruits, which influences the commercial ac-
ceptability, is utmost important for fresh fruit marketing. Among a variety of fruit maturity
detecting indicators, rind coloration is the most common one showing fruit maturity [12].
Take an example, bananas turn from green to yellow, and display brown speckling on rinds
as they reach optimum maturity. Recently, a fruit maturity index related to the chlorophyll
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amount presented in fruit is developed by assessing the index of the absorption difference
(IAD index), where the IAD index decreases during fruit ripening [13–15]. The promis-
ing tool provides a platform to monitor fruit maturity and to establish an optimal fruit
marketing timing. However, this attribute cannot offer reliable assessments of maturity
for a wide range of fruits without distinguishable rind color changes during ripening,
such as melons. Fruit texture, primarily affected by fruit softening, is another important
attribute to determine fruit maturity. The physical and mechanical textural characteristics,
associated with alterations of polysaccharide components in cell walls, cellular turgor
and changes in cuticle architecture, can be evaluated by instrumental and sensory assess-
ments. The evaluations are capable of providing qualitative and quantitative information
on flesh melting, crispiness, crunchiness, and firmness, which are utilized to determine
fruit maturity [16–21]. Unfortunately, either instrumental or sensory methodologies require
considerable effort and time, limiting their practical applications. Besides fruit textures,
many other indicators, e.g., Brix value, total acidity and soluble solids concentration, have
also been studied to detect fruit maturity [22–24]. Although sophisticated instrumenta-
tion is not highly required, their assessments suffer from laborious operating procedure,
time-consuming analysis and inevitable fruit destruction. Consequently, there is an urgent
demand to propose a rapid, straightforward, and non-destructive methodology for on-site
fruit maturity detection.

Inspired by the spectacular colors on peacock feathers, Tropical Morpho butterfly
wings, beetle shells, and cuttlefish skins, photonic crystals have been widely investi-
gated [25–28]. The photonic band gap materials, consisting of periodic dielectric structures,
bring about forbidden energy gaps for commensurate wavelengths of light. By moni-
toring the color changes of the diffractive media though altering the effective refractive
indices and the lattice spacings under chemical or biochemical stimulations, the amounts
of selected chemicals or biomaterials can be deduced. On account of the distinct optical
characteristics, numerous photonic crystal-based chemical and biological detectors with
visual readouts have been designed in recent years [29–34]. Nevertheless, most photonic
crystals manufactured by lithography-based approaches are impeded by complex and
time-consuming fabrication procedures using sophisticated equipment [35,36]. In compari-
son to those approaches, spontaneous crystallization of monodisperse colloids, induced by
electric fields, magnetic fields, gravity force, surface tensions, capillary forces, can serve
as templates to manufacture photonic crystals [37–41]. Even though the self-assembly
approaches are simple and inexpensive, the methodologies are only accessible for low-
throughput production. Moreover, it still remains a challenge to develop clairvoyant fruit
maturity detectors based on the tunable structural colors.

To address the issues, we show that three-dimensional macroporous hydrogel pho-
tonic crystals developed by integrating ethanol-sensitive polymers and a roll-to-roll com-
patible self-assembly technology enable on-site detection of fruit maturity. Take muskmelon
as an example, the consumption of applied ethanol vapor during muskmelon ripening
leads to less condensation of ethanol vapor in the pores, resulting in a highly visual readout.
Importantly, the clairvoyant melon maturity detector is portable, inexpensive and fast
responsive for practical applications.

2. Materials and Methods
2.1. Chemicals and Solvents

The reagents utilized for silica colloid synthesis, including tetraethyl orthosilicate
(≥99 wt.%), ethanol (200 proof), and aqueous ammonium hydroxide (30–33 wt.%), are
provided by Merck KGaA. Ethoxylated trimethylolpropane triacrylate (ETPTA, SR-454)
monomers and 2-hydroxyethyl methacrylate (HEMA) (≥99 wt.%) monomers are acquired
from Sartomer Americas and Merck KGaA, respectively. Initiators, 2-hydroxy-2-methyl-1-
phenyl-1-propanone (97 wt.%) and azobisisobutyronitrile (98 wt.%) are purchased from
Merck KGaA. Aqueous hydrofluoric acid (≥48 vol.%), used to wet etch silica colloids, is
collected from Merck KGaA. All chemicals and solvents are of analytical reagent quality and
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applied directly without any purification. Ultrapure water is obtained from a LABSTAC
WU113 laboratory ultrapure water system. The unripe muskmelons with green rinds,
tough blossom-ends, and stems still attached, are picked and provided by Taiwan Fresh
Fruit Marketing Cooperative.

2.2. Colloidal Self-Assembly by Doctor-Blade-Coating

After purification with 200 proof ethanol, monodispersed StÖber silica colloids are dis-
persed in ETPTA monomers with 2-hydroxy-2-methyl-1-phenyl-1-propanone (1 vol.%) as a
photoinitiator [42]. The volume fraction of silica colloids is controlled to be 74 vol.%. The
colloidal suspension is then doctor-blade-coated on a poly(ETPTA) coated glass substrate
using a modified Proyes PFA-2010-S automatic film applicator with a constant coating
speed of 1 cm/min. In the coating procedure, the blade provides a one-dimensional shear
force to align the silica colloids. After all, the ETPTA monomers are photopolymerized by
exposure to ultraviolet radiation for 5 s (X Lite 500 Pulsed curing system, OPAS, Portland,
OR, USA).

2.3. Preparation of Macroporous Poly(HEMA)/Poly(ETPTA) Photonic Crystals

The templating silica colloids can be selectively wet-etched by dropping a diluted hy-
drofluoric acid aqueous solution (1 vol.%) onto the silica colloidal crystal/poly(ETPTA) com-
posite, followed by rinsing with ultrapure water. The resulting macroporous poly(ETPTA)
photonic crystals are immersed in a mixture of HEMA monomers (20 vol.%), azobisisobu-
tyronitrile (1 vol.%), and ethanol (84 vol.%), followed by spinning the photonic crystals at
500 rpm for 2 min (WS-400B-6NPP-Lite, Laurell, North Wales, PA, USA) to eliminate re-
dundant mixture retained on the surface. After ethanol evaporation, the HEMA monomers
are polymerized at 70 ◦C to fabricate macroporous poly(HEMA)/poly(ETPTA) photonic
crystals.

2.4. Experimental Procedures for Muskmelon Maturity Sensing

The free-standing macroporous poly(HEMA)/poly(ETPTA) photonic crystals and an
unripe muskmelon are placed in a sealed chamber, which is evacuated and subsequently
aerated with demanded ethanol vapor at 25 ◦C. The chamber is finally backfilled with air
to maintain a constant pressure of 1 atm. Normal-incidence optical reflection spectra of the
macroporous photonic crystals under various ethanol vapor partial pressures are evaluated
using an optical fiber probe sealed in the chamber using a silicon-based high vacuum
leak sealant (AGB, Agar Scientific, Stansted, Essex, UK). A bubble testing is performed by
immersing the sealed chamber in a water-filled test container to provide indications of the
existence of leaks.

2.5. Determination of Brix Values in Muskmelons

After peeling and removing seeds, the muskmelon meat is mashed and centrifuged at
5000 rpm for 20 min. The sugar content (Brix) of the resulting supernatant is determined
using a digital Brix-meter (Atago PR-1 Refractometer, Taichung, Taiwan). The results are
conducted by averaging 20 measurements on each muskmelon.

2.6. Characterization

Scanning electron microscopy (SEM) is carried out on a JEOL 7001F FE-SEM. The
specimens are coated with gold/palladium alloy (Cressington 108 Auto sputter coater,
Chalk Hill, Watford, UK) prior to imaging. Photographic images are collected from a
Nikon Z50 digital camera. Normal incidence optical reflection spectra in the wavelength
range from 300 to 800 nm are performed using an Ocean Optics HR4000 UV-vis-near-IR
spectrometer with an Ocean Optics DT-MINI-2-GS deuterium tungsten halogen light source
and an Ocean Optics R400-UV-VIS optical fiber (wavelength range: 300 nm to 1.1 µm).
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3. Results

The fabrication process of macroporous photonic crystal-based fruit maturity sensors
is schematically illustrated in Figure 1. In brief, a mixture of monodispersed silica colloids
and ETPTA monomers is deposited onto a poly(ETPTA) coated glass substrate. The silica
colloids are shear-aligned in a scalable doctor-blade-coating procedure, followed by a
UV-triggered polymerization procedure to engineer silica colloidal crystal/poly(ETPTA)
composites. After wet-etching the embedded silica colloids, the resulting macroporous
poly(ETPTA) photonic crystals are peeled off and immersed in an ethanol-based HEMA
monomer mixture. The HEMA monomers can finally be polymerized at 70 ◦C to engineer
macroporous poly(HEMA)/poly(ETPTA) photonic crystals.
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Figure 1. Schematic illustration of the experimental procedures for fabricating large-area macroporous photonic crystals.

The three-dimensionally long-range hexagonal ordering of 250 nm silica colloids is
verified by SEM images of the doctor-blade-coated silica colloidal crystal/poly(ETPTA)
composite (Figure 2a,b). The embedded close-packed silica colloids can be completely wet-
etched to fabricate free-standing macroporous poly(ETPTA) photonic crystals (Figure 2c,d).
It is noteworthy that the protrusion depth of top-layer silica colloids from the poly(ETPTA)
matrix is shallower than the silica colloid radius, leading to the non-close-packed ap-
pearance of top-layer pores. Indeed, the three-dimensionally close-packed macroporous
structures are well-retained during the wet-etching procedure.

The diffraction gratings constructed of three-dimensionally close-packed 250 nm pores
are capable of featuring an iridescent color. The structural coloration originates from the
interference between multiple reflections from the parallel pore arrays as visible light
travels by different paths in the photonic crystals. In other words, iridescence is created
when part of incident light is reflected from the top surfaces of the pores, while a further
part of the rest light penetrated through them is reflected from their bottom surfaces. The
reflected waves travel back upward in the same direction and superpose to form a resultant
wave of greater amplitude controlled by the thickness and refractive index of the pores.
To evaluate optical characteristics of the doctor-blade-coated macroporous poly(ETPTA)
photonic crystals templated from 250 nm silica colloidal crystals, the spectral reflection
at normal incidence is measured in dry air environment (Figure 3a). It is noticed that the
reflection peak position of the photonic crystals locates at 463 nm, which agrees well with
the calculated value (464 nm) estimated using Bragg’s equation:

λpeak = 2·ne f f ·d (1)
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in which ne f f and d represent the effective refractive index and the lattice spacing of the as-
prepared photonic crystals, respectively [43]. The effective refractive index can be further
expressed as:

ne f f = npoly(ETPTA)·VFpoly(ETPTA) + nair·VFair (2)

where npoly(ETPTA) = 1.46 and nair = 1. The volume fractions of poly(ETPTA) (VFpoly(ETPTA))
and air (VFair) in macroporous photonic crystals equal to 0.26 and 0.74, respectively. This
agreement evidences that the pores are three-dimensionally close-packed. Fruit matu-
rity can be determined by assessing the presence of ethanol vapor partial pressure in
the environment during fruit ripening. According to that, visible ethanol vapor sensing
characteristics of the macroporous poly(ETPTA) photonic crystals is investigated under
various ethanol vapor partial pressures at ambient conditions (25 ◦C and 1 atm) to evaluate
their melon maturity detection capability. The condensation of ethanol vapor in the pores
creates a higher effective refractive index of medium, and therefore results in a red-shift
of reflection peak. It is found that the reflection peak position shifts from 463 to 565 nm
when the ethanol vapor partial pressure increases from 0 PSat. EtOH to 1.0 PSat. EtOH, where
PSat. EtOH denotes the saturation vapor pressure of ethanol at 25 ◦C. As a result, the corre-
sponding appearance of the photonic crystals changes from blue to yellow green with the
increase of ethanol vapor partial pressures (Figure 3b–e). More specifically, the photonic
crystals are able to exhibit various colors under different melon maturity levels.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. (a) Top-view SEM image of a doctor-blade-coated silica colloidal crystal/poly(ETPTA) 
composite consisting of 250 nm silica colloids. (b) Cross-sectional SEM image of the specimen in (a). 
(c) Top-view SEM image of macroporus poly(ETPTA) photonic crystals templated from 250 nm sil-
ica colloidal crystals. The insert displays a magnified top-view SEM image. (d) Cross-sectional SEM 
image of the specimen in (c). 

The diffraction gratings constructed of three-dimensionally close-packed 250 nm 
pores are capable of featuring an iridescent color. The structural coloration originates from 
the interference between multiple reflections from the parallel pore arrays as visible light 
travels by different paths in the photonic crystals. In other words, iridescence is created 
when part of incident light is reflected from the top surfaces of the pores, while a further 
part of the rest light penetrated through them is reflected from their bottom surfaces. The 
reflected waves travel back upward in the same direction and superpose to form a result-
ant wave of greater amplitude controlled by the thickness and refractive index of the 
pores. To evaluate optical characteristics of the doctor-blade-coated macroporous 
poly(ETPTA) photonic crystals templated from 250 nm silica colloidal crystals, the spec-
tral reflection at normal incidence is measured in dry air environment (Figure 3a). It is 
noticed that the reflection peak position of the photonic crystals locates at 463 nm, which 
agrees well with the calculated value (464 nm) estimated using Bragg’s equation: 

λ = 2 · 𝑛 · 𝑑 (1)

in which 𝑛 and d represent the effective refractive index and the lattice spacing of the 
as-prepared photonic crystals, respectively [43]. The effective refractive index can be fur-
ther expressed as: 𝑛 = 𝑛௬(ா்்) · 𝑉𝐹௬(ா்்) + 𝑛 · 𝑉𝐹 (2)

where 𝑛௬(ா்்) = 1.46  and 𝑛 = 1 . The volume fractions of poly(ETPTA) 
(𝑉𝐹௬(ா்்)) and air (𝑉𝐹) in macroporous photonic crystals equal to 0.26 and 0.74, 
respectively. This agreement evidences that the pores are three-dimensionally close-
packed. Fruit maturity can be determined by assessing the presence of ethanol vapor par-
tial pressure in the environment during fruit ripening. According to that, visible ethanol 
vapor sensing characteristics of the macroporous poly(ETPTA) photonic crystals is inves-
tigated under various ethanol vapor partial pressures at ambient conditions (25 °C and 1 
atm) to evaluate their melon maturity detection capability. The condensation of ethanol 

Figure 2. (a) Top-view SEM image of a doctor-blade-coated silica colloidal crystal/poly(ETPTA)
composite consisting of 250 nm silica colloids. (b) Cross-sectional SEM image of the specimen in (a).
(c) Top-view SEM image of macroporus poly(ETPTA) photonic crystals templated from 250 nm silica
colloidal crystals. The insert displays a magnified top-view SEM image. (d) Cross-sectional SEM
image of the specimen in (c).
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4. Discussion

In order to further improve the sensitivity of melon maturity detection, the poly(ETPTA)
pores are uniformly coated with poly(HEMA), which is highly responsive to ethanol vapor,
for fabricating macroporous poly(HEMA)/poly(ETPTA) photonic crystals. In comparison
with the pores of poly(ETPTA) photonic crystals, a decrease in top-layer pore opening
and an increase in wall thickness are evident on the poly(HEMA)/poly(ETPTA) photonic
crystals (Figure 4a,b). It is worth mentioning that the coating layer results in a higher
ne f f and the corresponding reflection peak position therefore shifts to 486 nm (Figure 4c).
The poly(HEMA) layer thickness can be calculated using the above-mentioned Bragg’s
equation. Here,

ne f f = npoly(ETPTA)·VFpoly(ETPTA) + npoly(HEMA)·VFpoly(HEMA) + nair·VFair (3)

In the equation, npoly(HEMA) equals to 1.45, while VFpoly(HEMA) can be expressed as
0.74 − VFair. The computed results indicate that the volume fraction of poly(HEMA) in
the pores is 19 vol.% (VFpoly(HEMA) = 0.14), which agrees well with the volume fraction
of HEMA (20 vol.%) in the coating mixture. In addition, it is found that the poly(HEMA)
coating layer thickness is around 10 nm.

The sensitivity of ethanol vapor detection for the as-fabricated macroporous poly(HE-
MA)/poly(ETPTA) photonic crystals is assessed by collecting optical reflection spectra of
the photonic crystals under various ethanol vapor partial pressures. It is found that the
reflection peak red-shifts with the increase of ethanol vapor partial pressures, actuating a
corresponding color change (Figure 5). Importantly, the reflection peaks of macroporous
poly(HEMA)/poly(ETPTA) photonic crystals display larger wavelength shifts than those
of macroporous poly(ETPTA) photonic crystals on exposure to ethanol vapor (Figure 6a).
The results can be expounded by the Flory-Huggins free energy theory [44]. On account of
a favorable Gibbs free energy change accompanying mixing poly(HEMA) with ethanol,
poly(HEMA) behaves a high swelling degree in the presence of ethanol. As a result, ethanol
vapor is apt to condense in the macroporous poly(HEMA)/poly(ETPTA) photonic crystals,
leading to a higher effective refractive index and a larger red-shift in reflection peak. It is
noteworthy that the red-shift increases linearly with ethanol vapor partial pressure, which
is critical in melon maturity detection. The linear optical response against vapor partial
pressure can again be explicated using Bragg’s equation, in which
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ne f f = npoly(ETPTA)·VFpoly(ETPTA) + npoly(HEMA)·VFpoly(HEMA) + nair·VFair + nliquid ethanol ·VFliquid ethanol (4)
Sensors 2021, 21, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 4. (a) Top-view SEM image of macroporus poly(HEMA)/poly(ETPTA) photonic crystals tem-
plated from 250 nm silica colloidal crystals. The insert displays a magnified top-view SEM image. 
(b) Cross-sectional SEM image of the specimen in (a). (c) Normal-incidence optical reflection spectra 
acquired from the macroporous poly(ETPTA) photonic crystals and the corresponding 
macroporous poly(HEMA)/poly(ETPTA) photonic crystals. 

The sensitivity of ethanol vapor detection for the as-fabricated macroporous 
poly(HEMA)/poly(ETPTA) photonic crystals is assessed by collecting optical reflection 
spectra of the photonic crystals under various ethanol vapor partial pressures. It is found 
that the reflection peak red-shifts with the increase of ethanol vapor partial pressures, ac-
tuating a corresponding color change (Figure 5). Importantly, the reflection peaks of 
macroporous poly(HEMA)/poly(ETPTA) photonic crystals display larger wavelength 
shifts than those of macroporous poly(ETPTA) photonic crystals on exposure to ethanol 
vapor (Figure 6a). The results can be expounded by the Flory-Huggins free energy theory 
[44]. On account of a favorable Gibbs free energy change accompanying mixing 
poly(HEMA) with ethanol, poly(HEMA) behaves a high swelling degree in the presence 
of ethanol. As a result, ethanol vapor is apt to condense in the macroporous 
poly(HEMA)/poly(ETPTA) photonic crystals, leading to a higher effective refractive index 
and a larger red-shift in reflection peak. It is noteworthy that the red-shift increases line-
arly with ethanol vapor partial pressure, which is critical in melon maturity detection. The 
linear optical response against vapor partial pressure can again be explicated using 
Bragg’s equation, in which  

Figure 4. (a) Top-view SEM image of macroporus poly(HEMA)/poly(ETPTA) photonic crystals
templated from 250 nm silica colloidal crystals. The insert displays a magnified top-view SEM image.
(b) Cross-sectional SEM image of the specimen in (a). (c) Normal-incidence optical reflection spectra
acquired from the macroporous poly(ETPTA) photonic crystals and the corresponding macroporous
poly(HEMA)/poly(ETPTA) photonic crystals.
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ethanol vapor pressure at 25 ◦C, respectively.

By presuming on the ethanol vapor condenses in the pores uniformly, VFpoly(ETPTA),
VFpoly(HEMA) and VFair can be regarded as 0.26, 0.14 and (1 − 0.26 − 0.14 − VFliquid ethanol),
respectively. The computed volume fraction of liquid ethanol (VFliquid ethanol) is further ap-
plied to calculate the condensed liquid ethanol layer thickness (Figure 6b). Clearly, thicker
condensed liquid ethanol layer associated with higher ethanol vapor partial pressures are
demonstrated. Moreover, the difference in calculated layer thickness between the macro-
porous poly(HEMA)/poly(ETPTA) photonic crystals and the macroporous poly(ETPTA)
photonic crystals is greater under higher vapor partial pressure. The results can be inter-
preted using Kelvin equation:

ln
PEtOH

PSat. Etoh
=

2·Vm·γ
r·R·T (5)

where Vm, γ, r, R and T denote the molar volume of liquid ethanol, the surface tension
of liquid ethanol, the radius of the resulting air cavity, the ideal gas constant, and the
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absolute temperature, respectively. With constant Vm, γ, R and T, ln PEtOH
PSat. Etoh

is proportional

to 1
r . In other words, thicker liquid ethanol layers are created in the pores under higher

ethanol vapor partial pressures. The greater ethanol vapor condensation further generates
a higher swelling degree of poly(HEMA) layer, resulting in a difference in wavelength
shift between the macroporous poly(HEMA)/poly(ETPTA) photonic crystals and the
macroporous poly(ETPTA) photonic crystals. Consequently, the sensitivity of photonic
crystal-based ethanol vapor sensing is improved by introducing a poly(HEMA) coating
layer.

The melon maturity detecting capability of the macroporous poly(HEMA)/poly(ETPTA)
photonic crystals is further verified at ambient conditions. To recognize an appropriate
initial ethanol vapor partial pressure in muskmelon ripening, each unripe muskmelon
(~500 g in average) is individually placed in a sealed glass chamber (30 L), on the inner
wall of which is dispensed a piece of free-standing macroporous photonic crystals. After
evacuation, the chambers are aerated with demanded ethanol vapor, and then backfilled
with air to maintain a constant pressure of 1 atm. The muskmelons of each treatment are
sampled for every 12 h to evaluate their maturities, which are associated with pigment
changes and sugar releases within the muskmelons. It is obvious that the muskmelon
ripening hastened by ethanol leads to a fast and drastic change in the accumulation of
sugar content (Brix) (Figure S1). For untreated muskmelons, it takes about 15 days to
reach full maturity. In comparison to that, the Brix of the saturated ethanol vapor-treated
muskmelons achieves a highest value in 10 days. Importantly, the muskmelon tissues
can convert applied ethanol to acetaldehyde, which leads to an increased conversion of 1-
aminocyclopropane-1 carboxylic acid (ACC) to ethylene within the tissues. The production
of ethylene causes denaturation of enzymes, accelerating tissue softening and converting
starch into sugar. As a result, the muskmelon ripening is further promoted on exposure
to higher ethanol vapor pressures. Although muskmelons gradually turn from greenish
white to creamy yellow in rind background color during ripening, it is hard to judge
with naked eyes (Figure S2). To express the rind background color change in a more
standardized way, the Commission Internationale de L’Eclairage (CIE) chromaticity values
of the saturated ethanol vapor-treated muskmelons at day 1, day 3, day 5, day 7 and day
9 are depicted in Figure S3. The resulting CIE chromaticity diagram indicates that the
rind colors are virtually indistinguishable from each other. In contrast, the macroporous
poly(HEMA)/poly(ETPTA) photonic crystals in the chamber are capable of exhibiting a
distinct color change with varying muskmelon maturities. The consumption of applied
ethanol vapor during muskmelon ripening causes less condensation of ethanol vapor in the
pores, leading to a lower effective refractive index of medium (Figure S1). As a result, the
reflection peak blue-shifts with the increases of Brix value (Figure 7a). It appears that the
corresponding appearance of the macroporous photonic crystals changes from yellow green
to blue (Figure 7b–e). It is worth noting that the lattice spacing of the macroporous photonic
crystals can be adjusted to improve the sensitivity of muskmelon maturity detection.
Macroporous photonic crystals templated from larger colloids behave larger blue-shifts
on ethanol vapor sensing, which can easily monitor the muskmelon maturity from the
dramatic color changing of the photonic crystals. Importantly, the as-developed on-site
melon maturity detection method exhibits comparable sensitivity to existing detection
methods, which suffer from sophisticated instrumentations, time-consuming analysis,
and inevitable fruit destruction. (Table 1). In addition, the as-engineered clairvoyant
melon maturity detector displaying a highly visible readout is small, portable and readily
responsive.
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Figure 7. (a) Dependence of the Brix value in a muskmelon on the reflection peak position of the macroporous
poly(HEMA)/poly(ETPTA) photonic crystals templated from 250 nm silica colloidal crystals as the muskmelon is ex-
posed to 1.00 PSat. EtOH. Photographic images of the muskmelon and the macroporous photonic crystals at (b) day 1, (c) day
3, (d) day 6 and (e) day 9.

Table 1. Summary of technical details of all melon maturity detection methods discussed in the
article.

Detection Method Instruments Sensitivity Reference

Regulation of Ethylene MCP Treatments 2.5–5 (µL/L) [16]
Brix Analysis Refractometer 0–15.5 (◦Brix) [45]

Aroma Analysis GC-MS/GC-FID 0–89/0–97 (%) [45]
Brix Analysis Refractometer 0–14.6 (◦Brix) [17]

Sugar Contents Analysis HPLC 0–20 (mg/g) [46]
Volatile Compounds Analysis GC-MS 0–88.8 (%) [18]
Volatile Compounds Analysis GC–MS/GC-O-MS 0–93/0–77 (%) [47]

Firmness Analysis Firmness Tester 0–70 (N) [19]
Texture Analysis Texture Analyzer 0–16 (N) [6]

Texture Evaluation Texture Analyzer 0–1.0 (N) [20]
Rind Color Analysis Reflectance Meter 0.1–5.0 [21]

5. Conclusions

In conclusion, three-dimensional macroporous poly(HEMA)/poly(ETPTA) photonic
crystals are engineered through integrating a scalable doctor blade coating technology
and a templating methodology. Owing to a favorable Gibbs free energy change on mixing
poly(HEMA) with ethanol, poly(HEMA) coating layer behaves a high swelling degree in
the presence of ethanol. Benefiting from that, the macroporous photonic crystals templated
from 250 nm colloids exhibit a large stop band shift from 572 to 501 nm on exposure
to varied ethanol vapor. The consumption of applied ethanol vapor during muskmelon
ripening therefore leads to a distinct change in color on the photonic crystals. It is evidenced
that the appearance of the photonic crystals turns from yellow green to blue as the Brix value
within the muskmelon increases from 5.8 to 14.3%. This indicates that the as-fabricated
macroporous photonic crystals display a highly visible readout for clairvoyant muskmelon
maturity detection. We believe that the macroporous poly(ETPTA) scaffold can be coated
with a variety of polymers with matching solubility parameters to specific chemicals,
providing a universal route for chemical/biological sensing, pH detection, temperature
monitoring, etc., without applying any instrumentation or label.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21217046/s1. Figure S1. Changes of Brix values with time of the muskmelons exposed to
various ethanol vapor partial pressures. Figure S2. Photographic images of the muskmelons exposed
to air (1st row), 0.32 PSat. EtOH (2nd row), 0.82 PSat. EtOH (3rd row), and 1.00 PSat. EtOH (4th row).
Figure S3. The color coordinates of the muskmelon images, while the muskmelon is exposed to 1.00
PSat. EtOH for 1 day, 3 days, 5 days, 7 days, and 9 days, based on the CIE 1931 color space. Figure S4.
Normal-incidence optical reflection spectra acquired from macroporous poly(HEMA)/poly(ETPTA)
photonic crystals templated from 250 nm silica colloidal crystals as the muskmelon is exposed to 1.00
PSat. EtOH.
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