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ABSTRACT: The octopus is capable of adhering to slippery, rough, and irregular
surfaces in the marine intertidal zone because of its periodic infundibulum-shaped
suckers on the arms. Here, we present a scalable self-assembly technology for
fabricating adhesion materials that mimic octopus sucker functionality. By utilizing
spin-coated two-dimensional colloidal crystals as templates, non-close-packed
nanosucker arrays are patterned on silicone substrates. The resulting nanosuckers
can be deformed to exhibit great adhesive capacities on both microrough and flat
surfaces in dry and wet environments. This indicates a probable biomimetic
solution to the challenge of wound care.
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For long, human beings suffer from wounds, including
skin wounds, oral wounds, bleeding wounds, and
surgical or traumatic disruption of connective tissue,

muscles, tendons, and organs. For emergent bleeding control
from open wounds, keeping wounds clean, and achieving
wound healing, gauzes have been commonly used.1,2

Commercial gauzes can be grossly divided into absorbable
and nonabsorbable materials; they are easy to produce,
preserve, and apply. Nylon is the most widely used non-
absorbable gauze material. Unfortunately, removing the gauze
provokes high stress concentration and tends to damage
surrounding tissues.3,4 In addition, the granuloma formation as
it resides long on the wound is another issue to be
addressed.5−7 In contrast, absorbable gauze materials, such as
poly(lactic-co-glycolic acid), often evoke inflammatory reactions
and induce undesirable scar formations, including intra-
abdominal adhesions.8−10 Moreover, achieving hemostasis
with manual compression through the absorbable or non-
absorbable gauzes can be difficult and time-consuming.
Currently, a variety of hemostatic agents, sealants, and

adhesives have been developed to provide easier, faster, and
more pragmatic approaches of tissue closure.11−13 The
chemical closure materials work as glues which bind tissues
together to progress the natural healing. Nevertheless, the
closure materials must be biocompatible, biodegradable, stable,
and meet the critical requirements approved by the U.S. Food
and Drug Administration (USFDA), and therefore, the types of
materials are expensive.14,15 Furthermore, once the chemicals
are applied on wounds, it is required to avoid washing or
immersing wounds in water, which may interfere with the

healing process.16,17 Frequently, difficult decisions will arise
where closure materials are not easy to remove and where the
dose to the underlying tissue may significantly exceed the
relevant maximum permissible dose.18

Millions of years before people began to create functional
structures, natural biological systems developed many archi-
tectures to produce functionalities by years of evolution.19−22

For instance, octopus arms, consisting of non-close-packed
centimeter-scale suckers, can attach to objects in order to
anchor the octopus body to substratum or manipulate,
investigate, grasp, and collect prey.23 The adhesion is generated
by the suckers attaching to a target, forming a seal at the rim,
and then inducing a negative pressure in the acetabulum
regardless of the target surface materials.24 Inspired by the
adhesion mechanism of octopus suckers, many artificial suckers
have been developed to achieve adhesion capabilities for a
range of commercial and industrial applications.25−27 However,
the reported octopus-inspired adhesive systems require an
additional suctioning system and power sources during the
adhesive process to reduce the pressure inside the suction
cups.28−30 Moreover, it is still a challenge to provide a high
switching adhesive strength ratio with excellent switchability.31

Another inherent problem of the adhesion is that the artificial
suckers can only be used on a flat target; however, most human
body tissues and wounds have bumps, curves, and corners in
millimeter/micrometer scale.32 In addition, in a wet environ-
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ment, the friction between the artificial suckers and the wet
surface decreases drastically due to fluid lubrication, making the
suckers slide under pulling force in the shear direction.33

RESULTS AND DISCUSSION
To address the issues, we develop a nanosucker array using a
scalable spin-coating technology, which enables large-scale
fabrication of non-close-packed colloidal crystals.34−36 This
bottom-up self-assembly methodology is realized by shear-
aligning concentrated silica colloidal suspensions with 20%
silica particle fraction.37 Figure 1a displays the photo of a

monolayer 250 nm silica colloidal crystal/ethoxylated trime-
thylolpropane triacrylate (ETPTA) polymer composite spin-
coated on a 4 in. diameter silicon wafer. Under white light
illumination, the wafer exhibits distinctive six-arm Bragg
diffraction patterns, indicating long-range hexagonal ordering
and the non-close-packed structure of colloidal crystal, which is
identical to the appearance of spin-coated silica colloidal
crystals on silicon wafers.38 The crystal lattice structure is
further demonstrated by the side-view SEM image, as shown in
Figure 1b. Although some defects, which are mostly caused by
silica particles with distinct sizes, are apparent, the long-range
hexagonal arrangement of silica particles is clearly observed
from the SEM image. Additionally, a thin ETPTA polymer
wetting layer separating the silica particles from the silicon
wafer surface is evident.
The ETPTA polymer matrix can then be partially removed

by performing an oxygen/argon reactive ion etching (RIE)
treatment. Because the etching rate of the ETPTA polymer is
much higher than that of silica, the silica particles are capable of
functioning as etching masks during the RIE process and
protecting the ETPTA wetting layer immediately underneath
them from being etched. The residual polymer matrix maintains
sufficient mechanical robustness of the released silica particles,
leading to the formation of mushroom-like features, which
consists of top silica caps and bottom ETPTA polymer stems.
In Figure 1c, the hexagonal ordering and non-close-packed

arrangement of nanomushrooms are clearly evident from the
top-view SEM image. It is observed that the distance between
the centers of neighboring silica particles is √2D, where D is
the diameter of templating silica colloids. The ETPTA
nanostems, whose sizes and shapes can be adjusted by applying
different plasma etching treatments, are seen in the cross-
sectional SEM image (Figure 1d). Owing to the formation of
covalent bonds between ETPTA polymer nanostems and the
APTCS-primed silicon wafer, the nanostems are chemically
adhered on the wafer surface.39,40

A poly(vinyl alcohol) (PVA) aqueous solution with hydro-
chloric acid (0.2 vol %) is then casted upon the plasma-etching-
treated monolayer colloidal crystal specimen. Because the
addition of hydrochloric acid facilitates the formation of
covalent bonds through hydroxyl condensation reactions
between PVA macromolecules and the hydroxyl groups on
silica particles, silica particles are removed as the PVA film is
peeled off from the silicon wafer surface after drying.41 By
contrast, the underneath ETPTA nanostems are still anchored
on the silicon wafer. In addition, the weak attachment between
silica particles and ETPTA polymer promotes effective
separation of silica nanocaps from the ETPTA nanostems.
Figure 2 confirms that the silica particles are successfully

removed from the wafer surface and uniformly embedded in
the PVA film. It is clearly observed that the arrangement of
silica particles is well retained, leading to the constitution of
hexagonal non-close-packed nanohole arrays, which are replicas
of the ETPTA nanostems.
The templated nanoholes can serve as second-generation

templates to develop nanosuckers. Poly(dimethylsiloxane)
(PDMS) exhibits numerous advantages coming from its
intrinsic properties, such as being deformable, gas permeable,
waterproof, biocompatible, nonhemolytic, and nontoxic, and
therefore minimizes immune reactions or inflammation on the
wounds.42−46 In this study, a PDMS precursor layer is casted
over the PVA template and solidified by a thermal curing
process. PDMS nanosucker arrays are then fabricated after
peeling off the PVA mold. Figure 3a,b displays the side-view
SEM images of the resulting PDMS nanosuckers. The
structures with concave surfaces and slanting angle sidewalls
are created throughout the soft-lithography-like replication. It is
observed that the size of the PDMS nanosuckers are reduced by
about 5% more than the size of ETPTA nanostems due to the
volume shrinkage of the PVA mold, resulting from the
evaporation of entrapped water in the PVA macromolecular
network during the solidification of the PDMS precursor.
Moreover, it is apparent that long-range hexagonal ordering
and the interstructure distance are well retained.
Figure 3c presents the appearance of a 4 in. diameter PDMS

nanosucker array templated from a PVA mold consisting of 250

Figure 1. Non-close-packed silica colloidal crystal on a silicon wafer
fabricated by the spin-coating technology. (a) Photograph of a
sample illuminated with white light. (b) Side-view SEM image. (c)
Top-view and (d) cross-sectional SEM images of a periodic array of
mushroom-like structures consisting of silica spherical caps and
ETPTA polymer stems on the silicon wafer prepared by plasma
etching.

Figure 2. (a) Top-view and (b) side-view SEM images of a PVA
composite film with embedded 250 nm silica colloidal crystals.
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nm silica colloidal crystals illuminated with white light. It is
clearly evident that a characteristic six-arm pattern on the
PDMS film is preserved. The pattern results from Bragg
diffraction of visible light from the hexagonal non-close-packed
nanosucker array, indicating that the periodic domain ordering
over centimeter-size scale can be achieved. As the PDMS film is
pressed against a flat glass substrate, the flexible nanosuckers
conform to the substrate and deform with release of the
internal air between nanosuckers and the substrate, forming a
seal and generating an adhesion force. Interestingly, in
comparison with an unpressed nanosucker-covered PDMS
film, the pressed one is uniformly transparent for a few square
centimeters, where the characters underneath the film are
clearly visible (Figure 3d). The transparent sample further
confirms the deformation of nanosuckers, so that incident light
is not diffracted from the sample. This indicates that the
adhesion behaviors on substrates can be determined from the
appearance of the nanosucker-covered PDMS film.
Importantly, the octopus-inspired nanosuckers are capable of

forming seals on uneven surfaces. As shown in Figure 3e, after
being pressed, the nanosucker-covered PDMS film is adhered
to a piece of sandpaper, whose surface has been fixed with 10
μm scale abrasive grains produced from silicon carbide (Figure
3f). The transparent appearance reveals that nanosuckers on
the PDMS film can be deformed and release the air between
that and the sandpaper. This further confirms that the as-
developed materials can generate an adhesion force on both flat
surfaces and microrough surfaces.

Nanosuckers utilize adhesion force derived from van der
Waals force and negative pressure effect. The adhesive
performance of a blank PDMS film is investigated with a
target surface of glass. As can be seen in Figure S1, the
unpatterned PDMS film exhibits a normal adhesion force of
around 0.05 N per square centimeter, which is induced by the
van der Waals force between the PDMS film and the glass
surface. The normal adhesion force of a nanosucker array
sample on flat substrates can be theoretically estimated by
Fnormal = ΔP × Atotal, where ΔP is the pressure differential
between the ambient pressure and the pressure inside the
nanosucker, and Atotal is the total area of attachment. Assuming
the volume of trapped air between the pressed nanosucker and
a flat substrate reaches 0, the ΔP = 10.1 N/cm2, and the area of
attachment for each nanosucker can be estimated using

∫ ∫ φ φ θ=
π

π

β π

−

−
A R cos d d

0

2

/2

/2
2

(1)

where R is the radius of templating silica colloids. As illustrated
in Figure 4, R sin β = r and r ≈ 100 nm (Figure 3b). The

calculated β and φ are 53° and 37°, respectively. By substituting
the calculated φ into formula 1, it is found that A is equal to 3.9
× 10−10 cm2. Moreover, as the intersucker distance is √2D, the
number of nanosuckers on a 1 cm2 nanosucker-covered PDMS

film can be expressed by = ( )N
D

1 cm
2

2
, where D = 250 nm. It is

estimated that N equals 8.0 × 108, and hence Atotal equals 0.3
cm2. Therefore, in the case of a 1 cm2 PDMS nanosucker array
sample, the theoretical adhesion force in the normal direction is
approximately equal to 3.2 N, which is much larger than the van
der Waals force.
To further comprehend the adhesive capacities of the

fabricated nanosucker-covered PDMS film, a tension meter is
applied to measure the adhesion forces. For a 1 cm2 PDMS
nanosucker array sample, the average adhesion forces in the
normal direction are 3.0 N on dry glass surfaces and 2.8 N on
wet glass surfaces (Figure 5a,b), which are competitive among
dry polymer-based adhesives.47−53 In addition, the results
reveal that the normal adhesion forces on dry surfaces and wet
surfaces are about 94 and 88% of the theoretical value,
respectively. This indicates that the water contained in
nanosuckers on wet surfaces can sustain negative pressures.
During attachment, the nanosucker array not only resists
perpendicular forces that incline to lift the nanosuckers from
the surface but also resists shearing forces that incline to slide
the nanosuckers in the direction parallel to the surface.54 It is

Figure 3. (a) Side-view SEM image of a PDMS nanosucker array
templated from a PVA composite film. (b) Magnified side-view
SEM image of the same sample as in (a). (c) Photograph of a 4 in.
sized PDMS nanosucker array illuminated with white light. (d)
Photograph of the same sample as in (c) adhering to a glass
substrate. The use of the logo is permitted from National Chung
Hsing University. (e) Photograph of the same sample as in (c)
adhering to a piece of sandpaper. (f) Top-view SEM image of the
sandpaper shown in (e).

Figure 4. Illustration of a fabricated PDMS nanosucker structure.
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observed that the average shear adhesion forces on dry glass
surfaces and wet glass surfaces are 1.3 and 1.2 N, respectively
(Figure 5c,d). The theoretical shear adhesion force of the
nanosucker array sample on flat substrates can be calculated by
Fshear = Fnormal × μ, where the friction coefficient between
PDMS and glass substrate (μ) is around 0.5.55,56 The
theoretical shear adhesion force equals 1.6 N, which is close
to the measured values. Importantly, by reducing the size of the
suckers, the thickness of the water film confined between the
nanosuckers and a wet surface reduces faster by applying the
same pressing pressure. As a consequence, the water film in the
contact region becomes thinner, leading to the increase of
friction coefficient. As the nanosucker array is attached to an
object, any force tends to remove the nanosuckers from the
surface, resulting in further decrease of pressure inside the
sucker.
It is significant to note that the nanosucker adhesion is

maintained over multiple contact cycles on both wet and dry
surfaces. The schematic illustration of the attachment and

detachment mechanisms is displayed in Figure 6. As the
nanosuckers are pressed against a substrate, the flexible
nanosuckers confirm to the substrate and deform by releasing
the internal air between nanosuckers and the substrate, forming
a seal and generating an adhesion force. With high silicon−
oxygen chain flexibility, great rotational mobility and large free
volume, PDMS is known as one of the most gas-permeable
polymers. Under a dry condition, air can permeate across the
nanosucker-covered PDMS film in the direction from outside
of the film to the space between nanosuckers and the substrate.
This causes the decrease of pressure differential between the
ambient pressure and the pressure inside the nanosuckers,
resulting in the detachment of nanosuckers. For the case of a
wet substrate, the sample is dried, while the detachment
procedure is performed in the ambient environment. The
presence of water provides better sealing and thus takes longer
for detachment. As shown in Figure 7, the octopus-inspired
adhesion can be repeatedly used for more than 10 times. It is
observed that more contact cycles result in lower adhesion,

Figure 5. Adhesion force characteristics of a 1 cm2 PDMS nanosucker array sample performed by a tension meter. Normal adhesion forces (a)
under a dry condition and (b) in a wet environment. Shear adhesion forces (c) under a dry condition and (d) in a wet environment. (e)
Photograph of a 10 cm2 PDMS nanosucker array sample adhering to a porcine (pig) heart.

Figure 6. Schematic illustration of the attachment and detachment mechanisms.
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which is caused by the deformation of flexible nanosuckers in
the attachment procedure (Figure 8).

In order to comprehend the adhesion performance of the
nanosucker-covered PDMS film, the time-dependent variation
of adhesion strength in the ambient environment is evaluated
(Figure 9). It is notable that the adhesion strength of
nanosuckers on a dry glass surface gradually decreases over
time. This can be explained by air permeation characteristics for
the nanosucker-covered PDMS film, as displayed in Figure S2.
In the early stage, the pressure at the permeation side of the
PDMS film increases linearly, resulting in the decrease of
pressure differential. This leads to the decrease of adhesion
force under a dry condition. After 60 min, the normal adhesion
force and shear adhesion force on a dry surface approximately
reach 0 N, resulting from the low pressure differential.
Importantly, the octopus-inspired nanosucker arrays do not
require a preload during the detaching process, which are
promising for a variety of technological applications such as
temporary gauze materials. Although further testing is required,
it is expected that the long-term adhesions can be achieved

using non-gas-permeable flexible materials to replace PDMS. In
comparison to that, the octopus-inspired adhesion can be
maintained longer than 80 min in water, demonstrating the
adhesion performance in wet environments.
To gain a better understanding of the adjustable adhesion,

the monolayer non-close-packed colloidal crystals consisting of
250 nm silica particles (Figure 1b) are used as etching masks
during an argon RIE treatment, followed by a wet-etching
procedure to pattern nanosucker arrays (Figure S3). By
comparing Figure 1b and Figure S3, it is evidenced that the
long-range hexagonal ordering and interstructure distance are
preserved. It is also observed that r ≈ 150 nm and the
interstructure distance is √2D, where D = 250 nm. For 1 cm2

PDMS nanosucker arrays, the average adhesion forces in the
normal direction and in the shear direction on dry glass surfaces
can reach 6.9 and 3.5 N, respectively, whereas the theoretical
normal adhesion force equals 7.2 N and the theoretical shear
adhesion force equals 3.6 N, which are close to the
experimental values. The results further demonstrate that the
structure of the nanosuckers also affects the adhesive capacities.
As a proof-of-concept application, once the nanosucker array is
pressed against a porcine heart, the nanosuckers can generate
an adhesion force (Figure 5e). It is worth mentioning that the
optically clear film dressings allow readily and easy inspection
on wound healing progress and any drainage for optimal
healing.

CONCLUSIONS
In summary, an uncomplicated and scalable templating
technology for fabricating non-close-packed nanosuckers on
PDMS substrates has been developed. The templated nano-
sucker arrays exhibit great adhesive capacities on both dry
surfaces and wet surfaces. In addition, resulting from the good
flexibility of the PDMS, the nanosuckers can be deformed and
generate an adhesion force on microrough surfaces. The
technology is compatible with standard industrial manufactur-
ing and provides a platform for varieties of medical applications
ranging from hemostasis, wound care, and wound nursing.

EXPERIMENTAL SECTION
Fabrication of Non-close-Packed Monolayer Colloidal

Crystals. The preparation of monolayer non-close-packed silica

Figure 7. Adhesion force characteristics of a 1 cm2 PDMS
nanosucker array sample under a dry condition and in a wet
environment.

Figure 8. Side-view SEM image of a PDMS nanosucker array
performed in the attachment and detachment procedure for (a)
one cycle, (b) 10 cycles, (c) 20 cycles, and (d) 30 cycles.

Figure 9. Adhesion strength of a 1 cm2 nanosucker-covered PDMS
film under a dry condition and in a wet environment as a function
of the time of attachment.
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colloidal crystals was performed following the well-established spin-
coating procedures.57,58 Monodispersed silica colloids with 250 nm
diameter were synthesized according to the Stöber method.59 The
silica colloids were purified in 200 proof ethanol (Echo Chemicals) by
multiple centrifugation/redispersion cycles and then redispersed in
UV-curable ethoxylated trimethylolpropane triacrylate monomer (SR
454, Sartomer) with 1 vol % 2-hydroxy-2-methyl-1-phenyl-1-
propanone (Darocur 1173, BASF) as the photoinitiator. The final
silica colloid volume fraction was adjusted to be ca. 20 vol %. After
filtration through a 5 μm syringe filter (Whatman) to remove any
particle aggregates, the silica colloidal suspension was dispersed on a
silicon wafer (n-type, Wafernet), which was primed by 3-
acryloxypropyl trichlorosilane (APTCS) and then coated by a
polymerized ETPTA wetting layer before use. The ETPTA wetting-
layer-coated silicon wafer was tilted and rotated to spread the
suspension and was then spun at 1000 rpm for 20 s, 3000 rpm for 20 s,
6000 rpm for 20 s, and 8000 rpm for 180 s using a spin coater (WS-
400B-6NPP-Lite spin process, Laurell). The ETPTA monomer was
then photopolymerized by exposure to UV radiation for 10 s using a
pulsed UV curing system (X Lite 500, OPAS).
Reactive Ion Etching. Oxygen and argon RIE was performed on a

Unaxis Shuttlelock RIE/ICP reactive ion etcher. To release the
embedded silica particles, oxygen RIE operating at 40 mTorr chamber
pressure, 20 sccm oxygen flow rate, and 100 W was carried out for 60
s. The monolayer silica colloidal crystals were then used as etching
masks during an oxygen/argon RIE treatment (40 mTorr chamber
pressure, 20 sccm oxygen flow rate and 20 sccm argon flow rate, and
100 W) and an argon RIE process (40 mTorr chamber pressure, 40
sccm argon flow rate, and 100 W) to pattern mushroom-like structure
arrays directly on the silicon wafer.
Soft-Lithography-like Replication. A 10 vol % poly(vinyl

alcohol) (Sigma-Aldrich) aqueous solution with 0.2 vol % hydrochloric
acid (Sigma-Aldrich) was poured onto the oxygen/argon plasma-
treated monolayer colloidal crystal sample. After being dried at room
temperature, the PVA film was peeled off from the silicon wafer
surface. Poly(dimethylsiloxane) (Sylgard 184, Dow Corning)
precursors were mixed and degassed, followed by pouring over the
as-fabricated silica colloidal crystal/PVA composite film. After being
cured at 70 °C for 1 h, the solidified PDMS film was peeled off from
the PVA film.
Air Permeation Measurement. The tested specimen was placed

on the porous steel which was covered by a filtration paper. Constant
pressure of air was maintained at the feed side, and vacuum was set at
the permeation side at the beginning of the experiment. Increase of
pressure at the permeation side with time was measured at room
temperature using a pressure transducer to evaluate the air
permeability.
Characterization. Field-emission scanning electron microscopy

was performed on a JEOL 6335F FEG-SEM. A thin layer of gold was
sputtered onto the specimens prior to imaging. A digital camera
(Nikon Coolpix L810) was employed to acquire images of the
specimens. Adhesion force characteristics of the samples were
conducted using a tension meter (NK-20). The specimens were
pressed against dry or wet glass surfaces and then peeled off in the
normal direction and in the shear direction. The experimental
measurement was repeated five times for each specimen, and the
average of these measurements was reported.
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